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Universality of anomalous one-dimensional heat conductivity
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In one and two dimensions, transport coefficients may diverge in the thermodynamic limit due to long-time
correlation of the corresponding currents. The effective asymptotic behavior is addressed with reference to the
problem of heat transport in one-dimensional crystals, modeled by chains of classical nonlinear oscillators.
Extensive accurate equilibrium and nonequilibrium numerical simulations confirm that the finite-size thermal
conductivity diverges with system siteask«L“. However, the exponeni deviates systematically from the
theoretical predictiorv=1/3 proposed in a recent pad€. Narayan and S. Ramaswamy, Phys. Rev. 188it.
200601(2002].
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Strong spatial constraints can significantly alter transporthis phenomenon, but may be also relevant for predicting
properties. The ultimate reason is that the response to extegransport properties of real materials. For instance, recent
nal forces depends on statistical fluctuations which, in turnmolecular dynamics results obtained with phenomenological
crucially depend on the system dimensionatityA relevant  carbon potentials indicate an unusually high conductivity of
example is the anomalous behavior of heat conductivity fokingle-walled nanotubept]: a power-law divergence with
d<2. After the publication of the first convincing numerical the tube length has been observed with an exponent very
evidence of a diverging thermal conductivity in anharmonicc|ose to the one obtained in simple 1D modd&s
chaing[1], this issue attracted a renovated interest within the The analysis of several moddlg] clarified that anoma-
theoretical community. A fairly complete overview is given |ous conductivity should occur generically whenever mo-
in Ref.[2], where the effects of lattice dimensionality on the mentum is conserved. For lattice models, this amounts to
breakdown of Fourier's law are discussed as well. Anomarequiring that at least one acoustic phonon branch be present
lous behavior means both a nonintegrable algebraic decay @i the harmonic limit. The only known exception is the
equilibrium correlations of the heat curred(t) (the Green-  coupled-rotor model, where normal transpidt is believed
Kubo integrang at large times—c and a divergence of the to arise as a consequence of the boundedness of the potential.
finite-size conductivityx(L) in the L—oo limit. This is very It is thus natural to argue about the universality of the
much reminiscent of the problem of long-time tails in fluids exponenta. On the one hand, there exist two theoretical
[3] where, in low spatial dimension, transport coefficientspredictions—namely,a=2/5, which follows from self-
may not exist at all thus implying a breakdown of the phe- consistent mode-coupling thedy,8], ande=1/3, obtained
nomenological constitutive laws of hydrodynamics. In onepy Narayan and Ramaswamy9] by performing a

dimension(1D) one finds renormalization-group calculation on the stochastic hydrody-
namic equations for a 1D fluid. On the other hand, the avail-
k(L)ecl?,  (I(t)I(0))ect™ (149, (1)  able numerical data fax range from 0.25 to 0.44. The most

convincing confirmation of the 1/3 value has been obtained
wherea>0, —1<6<0, and( ) is the equilibrium average. by simulating a one-dimensional gas of hard-point particles
For small applied gradients, linear-response theory allowsvith alternating massd40,11 and random-collision models
establishing a connection between the two exponents. By12]. In the former case, a careful determination of the scal-
assuming thak(L) can be estimated by cutting off the inte- ing exponent is, however, hindered by the presence of large
gral in the Green-Kubo formula at the “transit tim&7v (v finite-size corrections that are still sizable f6}(10%) par-
being some propagation velocity of excitatipnsne obtains ticles. As a matter of fact, other authdis3] report signifi-
kxlL™°—ie.,a=—46. cantly smaller estimatesy=0.25). This anomaly is possibly
Determining the asymptotic dependence of heat conduddue to the lack of microscopic chaos in that moddl]. The
tivity is not only important for assessing the universality of results obtained for models of 1D crystals are more contro-
versial, but consistently larger than 1/3. For instance, in the
case of the Fermi-Pasta-Ula/aPU) chain, the best estimate
*Electronic address: stefano.lepri@unifi.it so far isa¢=0.37[8,14].
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However, with the only exception of Rdfl1], all numeri- T ' T " T ' T
cal investigations limit themselves to fitting the scaling be-  g(f
havior in a suitable range, without determining possible
finite-size corrections, so that none of them can be fully 10°F
trusted. In view of the general relevance of establishing the
existence of one or more universality classes, in the present
paper we present far more accurate simulations which allow
determining the effective exponents for different lengths and 102F
frequencies. We anticipate thatis definitely larger than 1/3
in a 1D crystal model and possibly in agreement with the
mode-coupling prediction.

We consider an array dl pointlike identical atoms or- 4| . . . | . |
dered along a line. The position of tieh atom is denoted 10 108 10 102§ 10°
with x,, while its mass is fixed, without loss of generality,
equal to unity. By further assuming that interactions are re- FIG. 1. Power spectra of the flukas defined in Eq(4). The
stricted to nearest-neighbor pairs, the equations of motion alewermost curves refer to the purely quartic FPU mog@lwith

written as N=2048(solid line) and 1024(dashed ling The upper curves cor-
respond to the repulsive FPU model—Et0—for a=2, 2.3, and
5'(n: —Fo+Fp_1, Fp=—V'(Xps1—Xn), (2) 2.5 (from top to bottom and N= 1024 (solid line) or 512 (dashed

line). All microcanonical simulations are performed for the same
whereV’(z) is shorthand notation for the first derivative of energy densite=1 with time steph=0.05 for 16-10 steps. For
the interparticle potential/ with respect toz. The micro-  clarity, the curves have been arbitrarily shifted along the vertical

scopic expression of the heat current is axis.
J= (X=X ) (Xs 1+ X)F X he | 3 con5|der_a hlghly nonl_mear model in the hope that the
zn: 5 (Xn+1 n) (Xn+ 17 X0) P Xnhy ® asymptotic regime sets in over shorter time and space scales.

Moreover, it is advisable to work with a computationally
whereh,, is a suitably defined local enerd?]. For small  simple expression of the force. The best compromise we
oscillations (compared to the lattice spacidg=L/N), the  have found is the quartic Fermi-Pasta-Ulam potential
second term can be neglected agd-x,_,=b, so that Eq.
(3) can be approximated by

b V(Z)=1(z—a)“. 7)
. . 4
J=5 2 (%41t %n)Fo. (4)

n

.. Indeed, after the change of coordinakgs-u,+na[17], the
_The customary way to evaluate the thermal conductivity,,y ica)| distanca disappears from the equations of motion
« is through the Green-Kubo formula for u,,. This model has no free parameters: since the poten-
. tial expression is homogeneous, the dynamics is invariant
"mJ' drlim L= YJ3(7)3(0)). (5) under coordln_ate rescaling, so tha'; the energy per pasicle
0 Lo can be set, without loss of generality, equal to 1.
First, we have performed equilibrium microcanonical
A crucial, sometimes overlookdd5], point is that such for- simulations by integrating Eq$2) (with periodic boundary
mulas are formally identical for different statistical en- conditions with a fourth-order symplectic algorithrfi.8].
sembles, but the definition dfdiffers, because of “system- The power spectr&(f) of J are reported in Fig. 1. The
atic” contributions associated with other conservation lawslowest curves are data for the quartic FPU model obtained by
that must be subtracted dt6]. For instance, expressidd) averaging over 30 000 random initial conditions. In order to
is correct in the microcanonical ensemble with zero totaffurther decrease statistical fluctuations, a binning of the data
momentum, while in the canonical ensemtfier largeN) it over contiguous frequency intervals has been performed as
is well.
The long-time tail(1) manifests itself as a power-law di-

b . . 5 _ : .
3= 5 ; (Xn+1+xn)Fn_bUO<; Fn>, ©6) vergencef? in the lowS region. By comparing the results

KGk™=
kBT t—oo

obtained for different numbers of particles, one can clearly
see that finite-size corrections are negligible above a size-
vo being the center-of-mass velocity. This choice ensureslependent frequendy(N). By fitting the data in the scaling
that the autocorrelation af vanishes foit— . range[ f.(N),fs], wheref,~=10"3, we find 6= —0.396).
With reference to Eq(l), the possibly anomalous behav- These values are consistent with previous, less-accurate,
ior can be analyzed by computing the power spectrum of théndings for similar models, such as the standard 814
heat currentJ. Since we are interested in the long- and the diatomic Tod@l0] chains, thus confirming the ex-
wavelength and small-frequency behavior, it is convenient tgectation that they all belong to the same universality class.
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FIG. 2. The logarithmic derivativé.; of the energy-flux spec- ] )

trum versus the frequendyfor the pure FPU quartic potential—  FIG. 3. Quartic FPU model: the effective exponen; of the
FPU-4 withN=2048—and for model10) with a=2, a=2.3, and  finite-size conductivity forT.. =1.2T_=0.8 (solid circle3, com-
a=2.5 andN=1024, respectively. The two horizontal lines corre- Pared with the results£ ) of equilibrium simulations. The two
spond to the theoretical predictionsl/3 and—2/5. The statistical horizontal lines correspond to the theoretical predictions 1/3 and
error is on the order of the observed irregular fluctuations. S

In order to perform a more stringent test of the Scannga_\veraging over a set of about 30_initial (_:onditions. Simula-
behavior, we have determined the logarithmic derivative tions of the quartic FPU model with chains of length up to
65536 sites and free boundary conditions exhibit again a

dinS systematic increase of the effective exponent
Oer(f) = 7— ®)
dinf
dlin«
for different frequencies. Since finite-size effects are respon- aer(L)= a1 9

sible for the saturation o8(f) whenf—0, f.(N) can be
identified (see Fig. 2 as the frequency below whichg
starts growing towards zero. Abovg, the quality of our
numerical data allows revealing a slow but systematic de
crease 06 upon decreasing which approaches 0.44, a
value that is incompatible not only with the renormalization-
group prediction of Ref.9], but also with the result of mode-
coupling theory[7,8]. Furthermore, convergence seems not
fully achieved in the accessible frequency range.

as can be seen from the solid circles in Fig. 3, although one
can also observe that the four rightmost values are in very
good agreement with the mode-coupling exponent.

In order to compare more closely equilibrium and non-
equilibrium simulations, one can assume, following the argu-
ment exposed below E@l), that the finite-size conductivity
k(L) is determined by correlations up to time=L/vg,

. o . . whereuvg is the sound velocity. This means that the frequenc
Accordingly, it is advisable to look at thermal conductiv- fcan t:)esturned into a Iengthzvs/f. It might be arguedqthat Y

ity by means of nonequilibrium simulations too. It Is SUfﬁf the absence of a quadratic term in Ef). prevents a straight-
cient to measure the heat flux in a system put in contact Wlt|?

. . ; orward definition of such a velocity in the=0 limit; nev-
two heat reservoirs operating at different temperatires rtheless, it has been shohd] that an effective phonon
andT- ; Se_veral methods have b?—‘e” proposed based on bo ispersion relation at finite energy density can be evaluated
deterministic and stochastic algorithfi®. Regardless of the ¢ - model (7), yielding v.=1.308 ate=1. Using this value,
aCtL!"’.‘I .thermos.tattmg scheme, .after. a ftransient, an off e can ascertain that, at least fdr>1000, there is an ex-
equilibrium stationary state sets in, with a net heat curren

: : o Il h dsee i
flowing through the lattice. The finite-size thermal conduc- ellent agreement between the two approa again

tivity «(L) is then estimated as the ratio between the average 'i'he. data presented so far rule out the value predicted in

flux J and the overall temperature gradierft.(~T_)/L.  Ref.[9] for the model(7). On the other hand, such a predic-
Notice that, by this definitionx amounts to an effective tjon is consistent with numerical results for hard-core inter-
transport coefficient including both boundary and bulk scatzctions[11,12. In order to test for universality we thus tried
tering mechanisms. i to bridge the two classes of models by introducing a strong
We have used the Nogd#oover thermostats described in repulsive potential. This has also the merit of removing one
detail in Ref.[2]. In order to fasten the convergence towardsof the main drawbacks of a potential like E§)—namely,
the stationary state, the initial conditions have been geneghat negative values of, ., — X, are allowed—i.e., that par-
ated by thermostatting each particle to yield a linear temperaicles can formally cross each otherf, is interpreted as
ture profile(see[1]). This method is very efficient, especially their actual position. This unphysical feature may somehow
in long chains, when bulk thermalization may be signifi- pe circumvented by introducing explicitly a physical dis-
cantly slow. The heat flud has been obtained by integrating tance. For this purpose, we have added to the FPU potential
the equations over more than®1fme units and by further a repulsive term of the Lennard-Jongs)) form
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1 4 11
V(z):Z(z—a) +1—22—12—V0, (10)

whereV, is a suitable constant needed to set the minimum 0*
the energy equal to 0. The core repulsion introduces a furthét®

time scale—namely, that of mutual “collisions” between . : X
Y the role of tainedin Ref[9] that the hydrodynamic theory accounts for

particles[20]. Upon increasing, at fixed energy,
the repulsive term becomes negligible and modd)) re-

duces to the purely quartic FP{). For instance, in the
region whereV(z)<e the LJ energy contribution can be as
large as 0.57 fom=2 ande=1, but it is at most 0.028,
whena is increased to 2.5. Upon decreasimgthe LJ term
progressively affects the high-frequency spectral range. Thig
is because core repulsion becomes more relevant close to t

minimum.

In this context, one should, in principle, refer to the gen-
eral heat-flux expressiof8), which in the limit of pure hard

points reduces tcEnkﬁ/Z. Nevertheless, in the parameter
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guency, even on the smaller available range. Although on the
basis of numerics alone one cannot exclude that the
asymptoticd value depends oa, it is wiser to conjecture
hat the stronger the LJ term, the slower is the onset of the
ymptotic regime.

Altogether our simulations do not confirm the claim con-

all 1D models. The exponent is found to be definitely
larger than the expected value 1/3 and certainly closer to the
mode-coupling estimate 2/5. Anyhow, the systematic devia-
tions shown in Fig. 2 make also the convergence to this latter
value somehow questionable. In addition, we have also
hown that the low-frequency power-law behavior is
ﬁgongly influenced by the presence of a hard-core repulsion
term: even small variations of the spatial scale associated
with the equilibrium distance between interacting oscillators
enhance finite-size effects and slow down convergence with
respect to the purely anharmonic model. This scenario rather
suggests that at least two different universality classes may

range investigated hereby, the spectra of this quantity nevelyis; although their physical origin is up to now unclear.

exceed 10% of the spectra of B¢) in all frequency chan-
nels and, more importantly, hardly show any singular low-

A similar analysis should now be applied to the other
models recently considered, in order to determine how much

frequency behavior. We have therefore kept determining thg¢ the ohserved mutual fluctuations are the result of finite-

power spectrum of the flux as defined in E4).

size corrections. However, since we have basically reached

The effect of the LJ term on the low-frequency behaviorihe |imit of our computing facilities letting a cluster of 48

of S(f) can be appreciated already far2.3. A direct fit-

ting of the three upmost curves in Fig.(ih the available

scaling rangesyields § decreasing from—0.25(0) fora

=2.0 up to—0.37(8) fora=2.5. Having averaged the spec-

PC’s run for 2 months, it is also clear that more refined
analytic estimates have to be worked out to shed light on this
puzzling scenario.

tra over more than 5000 different samples, it is possible to This work is partially supported by the INFM-PAIS

investigate the convergence of eaglvalue through the ef-

project “Transport phenomena in low-dimensional struc-

fective exponen(8). Like in the quartic FPU model, one can tures” and by the EU network LOCNET, Contract No.
see from Fig. 2 thatd4 decreases upon decreasing fre-HPRN-CT-1999-00163.
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