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Universality of anomalous one-dimensional heat conductivity
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In one and two dimensions, transport coefficients may diverge in the thermodynamic limit due to long-time
correlation of the corresponding currents. The effective asymptotic behavior is addressed with reference to the
problem of heat transport in one-dimensional crystals, modeled by chains of classical nonlinear oscillators.
Extensive accurate equilibrium and nonequilibrium numerical simulations confirm that the finite-size thermal
conductivity diverges with system sizeL ask}La. However, the exponenta deviates systematically from the
theoretical predictiona51/3 proposed in a recent paper@O. Narayan and S. Ramaswamy, Phys. Rev. Lett.89,
200601~2002!#.
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Strong spatial constraints can significantly alter transp
properties. The ultimate reason is that the response to e
nal forces depends on statistical fluctuations which, in tu
crucially depend on the system dimensionalityd. A relevant
example is the anomalous behavior of heat conductivity
d<2. After the publication of the first convincing numeric
evidence of a diverging thermal conductivity in anharmo
chains@1#, this issue attracted a renovated interest within
theoretical community. A fairly complete overview is give
in Ref. @2#, where the effects of lattice dimensionality on th
breakdown of Fourier’s law are discussed as well. Anom
lous behavior means both a nonintegrable algebraic deca
equilibrium correlations of the heat currentJ(t) ~the Green-
Kubo integrand! at large timest→` and a divergence of the
finite-size conductivityk(L) in theL→` limit. This is very
much reminiscent of the problem of long-time tails in flui
@3# where, in low spatial dimension, transport coefficien
may not exist at all, thus implying a breakdown of the phe
nomenological constitutive laws of hydrodynamics. In o
dimension~1D! one finds

k~L !}La, ^J~ t !J~0!&}t2(11d), ~1!

wherea.0, 21,d,0, and^ & is the equilibrium average
For small applied gradients, linear-response theory allo
establishing a connection between the two exponents.
assuming thatk(L) can be estimated by cutting off the inte
gral in the Green-Kubo formula at the ‘‘transit time’’L/v (v
being some propagation velocity of excitations!, one obtains
k}L2d—i.e., a52d.

Determining the asymptotic dependence of heat cond
tivity is not only important for assessing the universality
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this phenomenon, but may be also relevant for predict
transport properties of real materials. For instance, rec
molecular dynamics results obtained with phenomenolog
carbon potentials indicate an unusually high conductivity
single-walled nanotubes@4#: a power-law divergence with
the tube length has been observed with an exponent
close to the one obtained in simple 1D models@5#.

The analysis of several models@2# clarified that anoma-
lous conductivity should occur generically whenever m
mentum is conserved. For lattice models, this amounts
requiring that at least one acoustic phonon branch be pre
in the harmonic limit. The only known exception is th
coupled-rotor model, where normal transport@6# is believed
to arise as a consequence of the boundedness of the pote

It is thus natural to argue about the universality of t
exponenta. On the one hand, there exist two theoretic
predictions—namely,a52/5, which follows from self-
consistent mode-coupling theory@7,8#, anda51/3, obtained
by Narayan and Ramaswamy@9# by performing a
renormalization-group calculation on the stochastic hydro
namic equations for a 1D fluid. On the other hand, the av
able numerical data fora range from 0.25 to 0.44. The mos
convincing confirmation of the 1/3 value has been obtain
by simulating a one-dimensional gas of hard-point partic
with alternating masses@10,11# and random-collision models
@12#. In the former case, a careful determination of the sc
ing exponent is, however, hindered by the presence of la
finite-size corrections that are still sizable forO(104) par-
ticles. As a matter of fact, other authors@13# report signifi-
cantly smaller estimates (a.0.25). This anomaly is possibly
due to the lack of microscopic chaos in that model@11#. The
results obtained for models of 1D crystals are more con
versial, but consistently larger than 1/3. For instance, in
case of the Fermi-Pasta-Ulam~FPU! chain, the best estimat
so far isa.0.37 @8,14#.
©2003 The American Physical Society02-1
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However, with the only exception of Ref.@11#, all numeri-
cal investigations limit themselves to fitting the scaling b
havior in a suitable range, without determining possi
finite-size corrections, so that none of them can be fu
trusted. In view of the general relevance of establishing
existence of one or more universality classes, in the pre
paper we present far more accurate simulations which a
determining the effective exponents for different lengths a
frequencies. We anticipate thata is definitely larger than 1/3
in a 1D crystal model and possibly in agreement with
mode-coupling prediction.

We consider an array ofN pointlike identical atoms or-
dered along a line. The position of thenth atom is denoted
with xn , while its mass is fixed, without loss of generalit
equal to unity. By further assuming that interactions are
stricted to nearest-neighbor pairs, the equations of motion
written as

ẍn52Fn1Fn21 , Fn52V8~xn112xn!, ~2!

whereV8(z) is shorthand notation for the first derivative
the interparticle potentialV with respect toz. The micro-
scopic expression of the heat current is

J5(
n

F1

2
~xn112xn!~ ẋn111 ẋn!Fn1 ẋnhnG , ~3!

where hn is a suitably defined local energy@2#. For small
oscillations ~compared to the lattice spacingb5L/N), the
second term can be neglected andxn2xn21.b, so that Eq.
~3! can be approximated by

J.
b

2 (
n

~ ẋn111 ẋn!Fn . ~4!

The customary way to evaluate the thermal conductiv
k is through the Green-Kubo formula

kGK5
1

kBT2
lim
t→`

E
0

t

dt lim
L→`

L21^J~t!J~0!&. ~5!

A crucial, sometimes overlooked@15#, point is that such for-
mulas are formally identical for different statistical e
sembles, but the definition ofJ differs, because of ‘‘system
atic’’ contributions associated with other conservation la
that must be subtracted out@16#. For instance, expression~4!
is correct in the microcanonical ensemble with zero to
momentum, while in the canonical ensemble~for largeN) it
is

J5
b

2 (
n

~ ẋn111 ẋn!Fn2bv0K (
n

FnL , ~6!

v0 being the center-of-mass velocity. This choice ensu
that the autocorrelation ofJ vanishes fort→`.

With reference to Eq.~1!, the possibly anomalous beha
ior can be analyzed by computing the power spectrum of
heat current J. Since we are interested in the lon
wavelength and small-frequency behavior, it is convenien
06710
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consider a highly nonlinear model in the hope that t
asymptotic regime sets in over shorter time and space sc
Moreover, it is advisable to work with a computational
simple expression of the force. The best compromise
have found is the quartic Fermi-Pasta-Ulam potential

V~z!5
1

4
~z2a!4. ~7!

Indeed, after the change of coordinatesxn5un1na @17#, the
physical distancea disappears from the equations of motio
for un . This model has no free parameters: since the po
tial expression is homogeneous, the dynamics is invar
under coordinate rescaling, so that the energy per partice
can be set, without loss of generality, equal to 1.

First, we have performed equilibrium microcanonic
simulations by integrating Eqs.~2! ~with periodic boundary
conditions! with a fourth-order symplectic algorithm@18#.
The power spectraS( f ) of J are reported in Fig. 1. The
lowest curves are data for the quartic FPU model obtained
averaging over 30 000 random initial conditions. In order
further decrease statistical fluctuations, a binning of the d
over contiguous frequency intervals has been performed
well.

The long-time tail~1! manifests itself as a power-law d
vergencef d in the low-f region. By comparing the result
obtained for different numbers of particles, one can clea
see that finite-size corrections are negligible above a s
dependent frequencyf c(N). By fitting the data in the scaling
range@ f c(N), f s#, where f s.1023, we find d520.39(6).
These values are consistent with previous, less-accu
findings for similar models, such as the standard FPU@8,14#
and the diatomic Toda@10# chains, thus confirming the ex
pectation that they all belong to the same universality cla

FIG. 1. Power spectra of the fluxJ as defined in Eq.~4!. The
lowermost curves refer to the purely quartic FPU model~7! with
N52048~solid line! and 1024~dashed line!. The upper curves cor-
respond to the repulsive FPU model—Eq.~10!—for a52, 2.3, and
2.5 ~from top to bottom! andN51024 ~solid line! or 512 ~dashed
line!. All microcanonical simulations are performed for the sam
energy densitye51 with time steph50.05 for 106–107 steps. For
clarity, the curves have been arbitrarily shifted along the verti
axis.
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In order to perform a more stringent test of the scal
behavior, we have determined the logarithmic derivative

deff~ f !5
d ln S

d ln f
~8!

for different frequencies. Since finite-size effects are resp
sible for the saturation ofS( f ) when f→0, f c(N) can be
identified ~see Fig. 2! as the frequency below whichdeff
starts growing towards zero. Abovef c , the quality of our
numerical data allows revealing a slow but systematic
crease ofdeff upon decreasingf, which approaches20.44, a
value that is incompatible not only with the renormalizatio
group prediction of Ref.@9#, but also with the result of mode
coupling theory@7,8#. Furthermore, convergence seems n
fully achieved in the accessible frequency range.

Accordingly, it is advisable to look at thermal conducti
ity by means of nonequilibrium simulations too. It is suf
cient to measure the heat flux in a system put in contact w
two heat reservoirs operating at different temperaturesT1

andT2 . Several methods have been proposed based on
deterministic and stochastic algorithms@2#. Regardless of the
actual thermostatting scheme, after a transient, an
equilibrium stationary state sets in, with a net heat curr
flowing through the lattice. The finite-size thermal condu
tivity k(L) is then estimated as the ratio between the aver
flux J̄ and the overall temperature gradient (T12T2)/L.
Notice that, by this definition,k amounts to an effective
transport coefficient including both boundary and bulk sc
tering mechanisms.

We have used the Nose´-Hoover thermostats described
detail in Ref.@2#. In order to fasten the convergence towar
the stationary state, the initial conditions have been ge
ated by thermostatting each particle to yield a linear temp
ture profile~see@1#!. This method is very efficient, especial
in long chains, when bulk thermalization may be sign
cantly slow. The heat fluxJ̄ has been obtained by integratin
the equations over more than 106 time units and by further

FIG. 2. The logarithmic derivativedeff of the energy-flux spec-
trum versus the frequencyf for the pure FPU quartic potential—
FPU-4 withN52048—and for model~10! with a52, a52.3, and
a52.5 andN51024, respectively. The two horizontal lines corr
spond to the theoretical predictions21/3 and22/5. The statistical
error is on the order of the observed irregular fluctuations.
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averaging over a set of about 30 initial conditions. Simu
tions of the quartic FPU model with chains of length up
65 536 sites and free boundary conditions exhibit agai
systematic increase of the effective exponent

aeff~L !5
d ln k

d ln L
, ~9!

as can be seen from the solid circles in Fig. 3, although
can also observe that the four rightmost values are in v
good agreement with the mode-coupling exponent.

In order to compare more closely equilibrium and no
equilibrium simulations, one can assume, following the ar
ment exposed below Eq.~1!, that the finite-size conductivity
k(L) is determined by correlations up to timet5L/vs ,
wherevs is the sound velocity. This means that the frequen
f can be turned into a lengthL5vs / f . It might be argued that
the absence of a quadratic term in Eq.~7! prevents a straight-
forward definition of such a velocity in theT50 limit; nev-
ertheless, it has been shown@19# that an effective phonon
dispersion relation at finite energy density can be evalua
for model~7!, yielding vs51.308 ate51. Using this value,
we can ascertain that, at least forN.1000, there is an ex-
cellent agreement between the two approaches~see again
Fig. 3!.

The data presented so far rule out the value predicte
Ref. @9# for the model~7!. On the other hand, such a predi
tion is consistent with numerical results for hard-core int
actions@11,12#. In order to test for universality we thus trie
to bridge the two classes of models by introducing a stro
repulsive potential. This has also the merit of removing o
of the main drawbacks of a potential like Eq.~7!—namely,
that negative values ofxn112xn are allowed—i.e., that par
ticles can formally cross each other ifxn is interpreted as
their actual position. This unphysical feature may someh
be circumvented by introducing explicitly a physical di
tance. For this purpose, we have added to the FPU pote
a repulsive term of the Lennard-Jones~LJ! form

FIG. 3. Quartic FPU model: the effective exponentaeff of the
finite-size conductivity forT151.2,T250.8 ~solid circles!, com-
pared with the results (2deff) of equilibrium simulations. The two
horizontal lines correspond to the theoretical predictions 1/3
2/5.
2-3
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V~z!5
1

4
~z2a!41

1

12

1

z12
2V0 , ~10!

whereV0 is a suitable constant needed to set the minimum
the energy equal to 0. The core repulsion introduces a fur
time scale—namely, that of mutual ‘‘collisions’’ betwee
particles@20#. Upon increasinga, at fixed energy, the role o
the repulsive term becomes negligible and model~10! re-
duces to the purely quartic FPU~7!. For instance, in the
region whereV(z),e the LJ energy contribution can be a
large as 0.57 fora52 and e51, but it is at most 0.028
whena is increased to 2.5. Upon decreasinga, the LJ term
progressively affects the high-frequency spectral range. T
is because core repulsion becomes more relevant close t
minimum.

In this context, one should, in principle, refer to the ge
eral heat-flux expression~3!, which in the limit of pure hard
points reduces to(nẋn

3/2. Nevertheless, in the paramet
range investigated hereby, the spectra of this quantity ne
exceed 10% of the spectra of Eq.~4! in all frequency chan-
nels and, more importantly, hardly show any singular lo
frequency behavior. We have therefore kept determining
power spectrum of the flux as defined in Eq.~4!.

The effect of the LJ term on the low-frequency behav
of S( f ) can be appreciated already fora52.3. A direct fit-
ting of the three upmost curves in Fig. 1~in the available
scaling ranges! yields d decreasing from20.25(0) for a
52.0 up to20.37(8) fora52.5. Having averaged the spe
tra over more than 5000 different samples, it is possible
investigate the convergence of eachd value through the ef-
fective exponent~8!. Like in the quartic FPU model, one ca
see from Fig. 2 thatdeff decreases upon decreasing fr
06710
f
er

is
the

-

er

-
e

r

o

-

quency, even on the smaller available range. Although on
basis of numerics alone one cannot exclude that
asymptoticd value depends ona, it is wiser to conjecture
that the stronger the LJ term, the slower is the onset of
asymptotic regime.

Altogether our simulations do not confirm the claim co
tained in Ref.@9# that the hydrodynamic theory accounts f
all 1D models. The exponenta is found to be definitely
larger than the expected value 1/3 and certainly closer to
mode-coupling estimate 2/5. Anyhow, the systematic dev
tions shown in Fig. 2 make also the convergence to this la
value somehow questionable. In addition, we have a
shown that the low-frequency power-law behavior
strongly influenced by the presence of a hard-core repuls
term: even small variations of the spatial scale associa
with the equilibrium distance between interacting oscillato
enhance finite-size effects and slow down convergence w
respect to the purely anharmonic model. This scenario ra
suggests that at least two different universality classes m
exist, although their physical origin is up to now unclear.

A similar analysis should now be applied to the oth
models recently considered, in order to determine how m
of the observed mutual fluctuations are the result of fin
size corrections. However, since we have basically reac
the limit of our computing facilities letting a cluster of 4
PC’s run for 2 months, it is also clear that more refin
analytic estimates have to be worked out to shed light on
puzzling scenario.

This work is partially supported by the INFM-PAIS
project ‘‘Transport phenomena in low-dimensional stru
tures’’ and by the EU network LOCNET, Contract No
HPRN-CT-1999-00163.
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